The need to bring research closer to society

Recently I came across a report in which the authors alerted about a contradiction in scientific and technological research. Despite science and technology are viewed as key elements to address global problems and improve our society, there is an increasing estrangement between research and society.

The decay since 1981 in public interest in science related issues[1] and the recent decrease in the number of students enrolled in techno-scientific careers are indicators of the increasing gap between scientific community and society. By using Google Trends to examine public attention to “science” and “technology”, we realise that searches of these two words have been declining all over the world since 2004, except in very few countries such as China. These negative trends are in contrast with the increasing published articles and participants in conferences. So, why are there indications of disconnection between science and society despite the increasing trend in academic communications?

Jorge Alvarado

Getting along with intelligent machines

It is a common view that typical white-collar jobs will disappear with the rise of intelligent machines. While some see this as the dark side of Analytics/Big Data/IOT, it is rather a challenge for educational systems and the future role people with have in their jobs.

«The replacement of humans in jobs -ranging from to help desks to automated cars- has been going on for many years. However, it has been taking a new form in recent years. Whereas machines where traditionally replacing manual labor, they are now also used to accomplish routine information processing and even decision making under uncertainty. The reason for this is simple: Analytic techniques fed with enough information perform better in most occasions.»

Tagged with: , , ,
Marco Bressan

People’s needs first

By Marco Bressan, chief data scientist, BBVA.

Tagged with: , , , , , , , , ,

Big data and analytics in higher education: So near, yet…

By Susan Grajek, Vice President for data, research and analytics, EDUCAUSE.

Big data and analytics are reshaping everything. Industry is using them to great effect, to better understand markets and customers, manage supply chains, and increase profits. Personalized medicine, fueled by analytics applied to big data, is poised to revolutionize healthcare. Higher education lags several paces behind these fields. Some institutions are demonstrating improvements in retention and degree completion, but most are still using data to monitor student outcomes and activities rather than predict or proactively intervene.

Certainly, trends related to analytics and data are influencing institutional IT strategy, more so than other types of trends EDUCAUSE tracks, including those related to teaching and learning and security and risk1. Data-driven decision-making, enterprise data management, and data integration issues are all already incorporated into or exerting a major influence on emerging IT strategy in at least half of US colleges and universities. Personalized learning, however, is only this influential at one in five institutions.

Tagged with: , , , , , , , , , , ,

Predicting course outcomes with digital textbook analytics

By Reynol Junco, associate professor, Iowa State University; and faculty associate, Berkman Center for Internet and Society1.

Over the last years, I’ve been researching how real-time behavioral data, collected unobtrusively through technology, can predict learning outcomes. As part of this line of research, I’ve recently published the paper Predicting course outcomes with digital textbook usage data in The Internet and Higher Education.

The study used data collected from student engagement with digital textbooks in order to predict course grades. Two measures of student engagement with the texts were analyzed: an engagement index that was calculated through a linear combination of the number of pages read, number of times a student opened their textbook, number of days the student used their textbook, time spent reading, number of highlights, number of bookmarks, and number of notes. The second analysis included the individual components of the engagement index.

Tagged with: , , , , , , , , ,

Smart Cities, Big Data and Behavioural and Social Sciences: Human Cities

By Manuel Armayones, associate professor and Deputy Director, Faculty of Psychology and Education Sciences, UOC.

In 1995, the American Psychology Association (APA), through its Task Force for the analysis of the concept Intelligence, considered it as the ability to “understand complex ideas, to adapt effectively to the environment, to learn from experience, to engage in various forms of reasoning, to overcome obstacles by taking thought”.

The question we must ask when relating this concept to that of smart cities and big data & analytics is if asking the right questions of data, so that they assist us in making decisions, can help us to better adapt to the environment, learn from experience and engage in various forms of reasoning.

Tagged with: , , , , , , , , ,

Big Data for development

By Natalie Shoup, program manager, Data-Pop Alliance.

As a global coalition on Big Data and development, Data-Pop Alliance works together with different actors to promote a people-centered revolution on these technologies. We took advantage of the visit of its program manager, Natalie Shoup, to Barcelona to talk about the challenges and risks of Big Data and Analytics, especially regarding education and development. According to Shoup, we need to engage people both in data literacy and in the ethical and legal discussions around those technologies. Check out her reflections in the short video below.

Tagged with: , , , , , , , , , ,
About the Question
Are Big Data & Analytics shaping a smarter society?

Every day we generate a huge amount of big data, but we need to resort to analytics to make abstract information meaningful and get valuable knowledge from it. In education, learning platforms let us easily gather an immense quantity of data regarding students’ behaviour, interactions, preferences and opinions. When properly analysed — through learning analytics — all these data might provide useful insight on how to make learning processes more adaptive, attractive and efficient.

Are these techniques allowing us to provide better support to our students? Are we taking advantage of big data and analytics to help shape the citizens of the future?

Big Data and Simheuristics